Recently, spoken dialogue systems have been widely deployed in a variety of applications, serving a huge number of end-users. A common issue is that the errors resulting from noisy utterances, semantic misunderstandings, or lack of knowledge make it hard for a real system to respond properly, possibly leading to an unsatisfactory user experience. To avoid such a case, we consider a proactive interaction mechanism where the system predicts the user satisfaction with the candidate response before giving it to the user. If the user is not likely to be satisfied according to the prediction, the system will ask the user a suitable question to determine the real intent of the user instead of providing the response directly. With such an interaction with the user, the system can give a better response to the user. Previous models that predict the user satisfaction are not applicable to DuerOS which is a large-scale commercial dialogue system. They are based on hand-crafted features and thus can hardly learn the complex patterns lying behind millions of conversations and temporal dependency in multiple turns of the conversation. Moreover, they are trained and evaluated on the benchmark datasets with adequate labels, which are expensive to obtain in a commercial dialogue system. To face these challenges, we propose a pipeline to predict the user satisfaction to help DuerOS decide whether to ask for clarification in each turn. Specifically, we propose to first generate a large number of weak labels and then train a transformer-based model to predict the user satisfaction with these weak labels. Empirically, we deploy and evaluate our model on DuerOS, and observe a 19% relative improvement on the accuracy of user satisfaction prediction and 2.3% relative improvement on user experience.
translated by 谷歌翻译
基于AI的蛋白质结构预测管道(例如AlphaFold2)已达到了几乎实验的准确性。这些高级管道主要依赖于多个序列比对(MSA)和模板作为输入来从同源序列中学习共进化信息。但是,从蛋白质数据库中搜索MSA和模板很耗时,通常需要数十分钟。因此,我们尝试通过仅使用蛋白质的主要序列来探索快速蛋白质结构预测的极限。提出了Helixfold单一的形式将大规模蛋白质语言模型与AlphaFold2的优质几何学习能力相结合。我们提出的方法,Helixfold单个,首先预先培训是一种大规模蛋白质语言模型(PLM),使用了数以千计的主要序列利用自我监督的学习范式,将用作MSA和模板的替代方法共同进化信息。然后,通过将预训练的PLM和AlphaFold2的必需组件组合在一起,我们获得了一个端到端可区分模型,以仅从主要序列预测原子的3D坐标。 Helixfold-Single在数据集CASP14和Cameo中得到了验证,通过基于MSA的方法,具有大型同源家庭的基于MSA的方法,从而实现了竞争精度。此外,与主流管道进行蛋白质结构预测相比,Helixfold单个的时间比主流管道的时间少得多,这表明其在需要许多预测的任务中的潜力。 HelixFold-Single的守则可在https://github.com/paddlepaddle/paddlehelix/tree/dev/dev/pprotein_folding/helixfold-single上获得,我们还在https://paddlehelix.baidu.com上提供稳定的Web服务。 /app/drug/protein-single/prevast。
translated by 谷歌翻译
由于肿瘤的异质性,在个性化的基础上预测抗癌药物的临床结局在癌症治疗中具有挑战性。已经采取了传统的计算努力来建模药物反应对通过其分子概况描绘的单个样品的影响,但由于OMICS数据的高维度而发生过度拟合,因此阻碍了临床应用的模型。最近的研究表明,深度学习是通过学习药物和样品之间的学习对准模式来建立药物反应模型的一种有前途的方法。但是,现有研究采用了简单的特征融合策略,仅考虑了整个药物特征,同时忽略了在对齐药物和基因时可能起着至关重要的作用的亚基信息。特此在本文中,我们提出了TCR(基于变压器的癌症药物反应网络),以预测抗癌药物反应。通过利用注意机制,TCR能够在我们的研究中有效地学习药物原子/子结构和分子特征之间的相互作用。此外,设计了双重损耗函数和交叉抽样策略,以提高TCR的预测能力。我们表明,TCR在所有评估矩阵上(一些具有显着改进)的各种数据分裂策略下优于所有其他方法。广泛的实验表明,TCR在独立的体外实验和体内实际患者数据上显示出显着提高的概括能力。我们的研究强调了TCR的预测能力及其对癌症药物再利用和精度肿瘤治疗的潜在价值。
translated by 谷歌翻译
嵌入式模型是高维数据的有效学习范例。但是,嵌入模型的一个开放问题是它们的表示(潜在因子)通常会导致大参数空间。我们观察到,现有的分布式训练框架面临嵌入模型的可伸缩性问题,因为从服务器的共享嵌入参数更新和检索共享嵌入参数通常占主导地位培训周期。在本文中,我们提出了一种新的系统框架,可显着提高巨大嵌入模型培训的可扩展性。我们拥抱嵌入的嵌入式作为绩效机会的倾斜流行分布,并利用它来解决具有嵌入缓存的通信瓶颈。为确保缓存跨越一致性,我们将新的一致性模型纳入HET设计,该模型提供了在每嵌入的基础上提供细粒度的一致性保证。与以前的工作相比,只允许读取操作的僵化,HET也利用了写入操作的血液性。六种代表性任务的评估表明,在最先进的基线上,HET达到高达88%的嵌入通信减少和高达20.68倍的性能加速。
translated by 谷歌翻译
在本文中,我们提出了一种新的点云表示。与传统点云表示不同,其中每个点仅表示3D空间中的位置或局部平面,神经点中的每个点通过神经领域表示局部连续几何形状。因此,神经点可以表达更复杂的细节,因此具有更强的表示能力。具有含有丰富的几何细节的高分辨率表面培训神经点,使得训练模型具有足够的各种形状的表达能力。具体地,我们通过2D参数域和3D本地补丁之间的局部同构来提取点上的深度局部特征并通过局部同构构造神经字段。在决赛中,局部神经领域集成在一起以形成全局表面。实验结果表明,神经点具有强大的代表能力,展示了优异的鲁棒性和泛化能力。通过神经点,我们可以用任意分辨率重新采样点云,并优于最先进的点云上采样方法,通过大边距。
translated by 谷歌翻译
Audio-Visual scene understanding is a challenging problem due to the unstructured spatial-temporal relations that exist in the audio signals and spatial layouts of different objects and various texture patterns in the visual images. Recently, many studies have focused on abstracting features from convolutional neural networks while the learning of explicit semantically relevant frames of sound signals and visual images has been overlooked. To this end, we present an end-to-end framework, namely attentional graph convolutional network (AGCN), for structure-aware audio-visual scene representation. First, the spectrogram of sound and input image is processed by a backbone network for feature extraction. Then, to build multi-scale hierarchical information of input features, we utilize an attention fusion mechanism to aggregate features from multiple layers of the backbone network. Notably, to well represent the salient regions and contextual information of audio-visual inputs, the salient acoustic graph (SAG) and contextual acoustic graph (CAG), salient visual graph (SVG), and contextual visual graph (CVG) are constructed for the audio-visual scene representation. Finally, the constructed graphs pass through a graph convolutional network for structure-aware audio-visual scene recognition. Extensive experimental results on the audio, visual and audio-visual scene recognition datasets show that promising results have been achieved by the AGCN methods. Visualizing graphs on the spectrograms and images have been presented to show the effectiveness of proposed CAG/SAG and CVG/SVG that could focus on the salient and semantic relevant regions.
translated by 谷歌翻译
Mitosis nuclei count is one of the important indicators for the pathological diagnosis of breast cancer. The manual annotation needs experienced pathologists, which is very time-consuming and inefficient. With the development of deep learning methods, some models with good performance have emerged, but the generalization ability should be further strengthened. In this paper, we propose a two-stage mitosis segmentation and classification method, named SCMitosis. Firstly, the segmentation performance with a high recall rate is achieved by the proposed depthwise separable convolution residual block and channel-spatial attention gate. Then, a classification network is cascaded to further improve the detection performance of mitosis nuclei. The proposed model is verified on the ICPR 2012 dataset, and the highest F-score value of 0.8687 is obtained compared with the current state-of-the-art algorithms. In addition, the model also achieves good performance on GZMH dataset, which is prepared by our group and will be firstly released with the publication of this paper. The code will be available at: https://github.com/antifen/mitosis-nuclei-segmentation.
translated by 谷歌翻译
紧张的机器人由刚性杆和柔性电缆组成,表现出高强度对重的比率和极端变形,使它们能够驾驭非结构化的地形,甚至可以在严酷的冲击力上生存。但是,由于其高维,复杂的动态和耦合体系结构,它们很难控制。基于物理学的仿真是制定运动策略的途径,然后可以将其转移到真实的机器人中,但是建模时态机器人是一项复杂的任务,因此模拟会经历大量的SIM2REAL间隙。为了解决这个问题,本文介绍了台词机器人的真实2SIM2REAL策略。该策略是基于差异物理引擎的,可以在真正的机器人(即离线测量和一个随机轨迹)中进行有限的数据进行训练,并达到足够高的精度以发现可转移的运动策略。除了整体管道之外,这项工作的主要贡献包括在接触点处计算非零梯度,损失函数和轨迹分割技术,该技术避免了训练期间梯度评估的冲突。在实际的3杆张力机器人上证明并评估了所提出的管道。
translated by 谷歌翻译
由于需要经济的储存和二元法规的效率,因此无监督的哈希对二元表示学习引起了很多关注。它旨在编码锤子空间中的高维特征,并在实例之间保持相似性。但是,大多数现有方法在基于多种的方法中学习哈希功能。这些方法捕获了数据的局部几何结构(即成对关系),并且在处理具有不同语义信息的实际特征(例如颜色和形状)的真实情况时缺乏令人满意的性能。为了应对这一挑战,在这项工作中,我们提出了一种有效的无监督方法,即共同个性化的稀疏哈希(JPSH),以进行二进制表示学习。具体来说,首先,我们提出了一个新颖的个性化哈希模块,即个性化的稀疏哈希(PSH)。构建了不同的个性化子空间,以反映不同群集的特定类别属性,同一群集中的自适应映射实例与同一锤子空间。此外,我们为不同的个性化子空间部署稀疏约束来选择重要功能。我们还收集了其他群集的优势,以避免过度拟合,以构建PSH模块。然后,为了在JPSH中同时保留语义和成对的相似性,我们将基于PSH和歧管的哈希学习纳入无缝配方中。因此,JPSH不仅将这些实例与不同的集群区分开,而且还保留了集群中的本地邻里结构。最后,采用了交替优化算法,用于迭代捕获JPSH模型的分析解决方案。在四个基准数据集上进行的大量实验验证了JPSH是否在相似性搜索任务上优于几个哈希算法。
translated by 谷歌翻译
点云的几乎没有分割仍然是一项具有挑战性的任务,因为没有有效的方法将局部点云信息转换为全局表示,这阻碍了点特征的概括能力。在这项研究中,我们提出了双向特征全球化(BFG)方法,该方法利用点特征和原型向量之间的相似性测量,以双向方式将全球感知嵌入到局部点特征中。随着点对点型全球化(PO2PRG),BFG根据从密度点特征到稀疏原型的相似权重将本地点特征汇总到原型。使用原型到点全球化(PR2POG),基于从稀疏原型到密集点特征的相似性权重,全局感知嵌入到局部点特征中。每个类嵌入全局感知的类的稀疏原型汇总到基于度量学习框架的几个原型3D分割的单个原型。对S3DIS和SCANNET的广泛实验表明,BFG显着超过了最新方法。
translated by 谷歌翻译